CDF/MEMO/STATISTICS/PUBLIC /6850

Detecting a Bad Random Number Generator
Joel Heinrich—University of Pennsylvania
January 22, 2004

1 Introduction

The main purpose of this note is to exhibit a defect in the Linux C and C++
standard library pseudo-random number generator rand and the Linux/UNIX
system-library generator random. Since Linux rand and Linux/UNIX random
use identical algorithms, we will use “random” to refer to both. The defect
is uncovered when random fails a simple empirical test.

However, in the process of writing this note, a major bug in CLHEP’s
RandEngine class (for Linux platforms) was discovered, which is described
in section This bug is unrelated to the failure of random mentioned
above, since we call random directly, rather than using RandEngine, which
is simply broken on Linux platforms.

Empirical tests of random number generators involve “goodness-of-fit”
issues, and this note can also serve as a simple example of goodness-of-fit.
(It is not intended as an exhaustive validation of available generators, since
only a single test is employed.)

Good uniform random number generators must produce deviates that
are:

e Uniformly distributed.
e Independent.

“Independent” means that knowing the values of previously produced devi-
ates provides no extra information about the values of the subsequent devi-
ates. As non uniformity (in one dimension) is easily detected, “bad” uniform
random number generators, in practice, actually fail a test of independence.ﬂ

One can view “independent” as meaning “uniformly distributed in an
N-dimensional hypercube” for arbitrarily large N. For N not too large, for
example, one could test for independence by:

1. divide the hypercube into 10" bins,
2. generate M > 10V random points (uy, us, ... uy) in N-space

3. use the generated points to populate the bins

'However, see section 4| for a generator that actually does fail the uniformity test.

1

4. calculate y2 = 3107 %

bin

, where B; is the population of the ith

5. compute the P-value: the probability of obtaining > the observed x?
(here for 10N — 1 DOF)

6. reject the generator if the P-value is too small

Although the choice of 10 above is just for illustration, it is clear that this
scheme is not practical for more than of order 107 bins. For large N, we need
another idea.

Unfortunately, for large N, there is no simple scheme that is guaranteed
to catch all bad generators—goodness of fit in N > 1 dimensions is an
unsolved problem. The best we can do is calculate a “statistic”, which is a
projection from N dimensions to a smaller number of dimensions—usually
just one dimension. The statistic we employ in this note is the “maximum
spacing”.

2 The Maximum Spacing Statistic

Generating n — 1 uniform deviates in the interval 0 to 1 divides that interval
into n segments. The largest of these we will call the “maximum spacing”,
and denote it’s value by S. Clearly, we have 1/n < S < 1. The smallest case,
S = 1/n, occurs when the n — 1 deviates, sorted in ascending order, have the
values 1/n,2/n,...,(n — 1)/n, dividing the unit interval into n segments of
equal size. The largest, S = 1, occurs when the uniform deviates are just 0’s
and 1’s, so that the unit interval remains undivided.

The calculation of § is very well adapted to the C++ STL algorithms.
Given that generator rangen() returns an int in the range 0 to INT_MAX,
the following C++ fragment suffices to calculate the maximum spacing:

w[0] = 0; // array w must be able to hold n+l int’s
std: :generate(w+1l,w+n,rangen) ;

wln] = INT_MAX;

std: :sort(w+l,w+n);
std::adjacent_difference(w,w+n+1,w);

double S = *std::max_element (w+1l,w+n+1)/(INT_MAX+1.0);

An important point is that the statistic S is independent of the order of
the n — 1 generated deviates: the first step after generating is to sort them.
That is, this statistic looks at what values occur in a set of a certain size,
and not the order in which they are added to the set. A related test, George
Marsaglia’s “birthday spacings” test [I} 2], also has this property.

What makes the maximum spacing statistic interesting is that the cumu-
lative distribution function for § is known exactly[3]:

2]

P(z) = prob(S >) = ;(—1)’6*1 (Z) (1 — ka)! (@ > 0)

where [t]| stands for “the greatest integer less than or equal to ¢”. (Note that

(Z) = 0 when k > n.) Since the identity[4]

n

0= (-1 () (1 = k!

k=0
holds for all z, we also have
Pa)=1= 3 (-0 (1) (1= ko) (z > 0)
ST

where [t] stands for “the least integer greater than or equal to t”.

Thus, it is easy to compute P(z): Depending on the value of z, one
chooses the formula which requires the fewest terms, so no more than n/2
terms are needed. Although the sum involves terms of opposite signs, the
cancellation is not severe (providing the above rule is followed), so computing
the sum in double precision is adequate.

Another reason that the maximum spacing is interesting as a test for
uniform random number generators is that similar tests of the past have
focused more the minimum. For example, the “minimum distance test” and
the “3D-spheres test“ from George Marsaglia’s Diehard battery of tests[2]
both look at minimum distances (in 2 and 3 dimensions, respectively).

3 Performing the Test

The procedure is the following:

1. Generate N uniform random deviates, compute S and U = P(S). Note
that U itself should behave as a uniform random deviate.

2. Repeat step-1 10° times, collecting the U deviates in a histogram with
10 bins.

3. Compute x? = 1072 %, (B; — 10°)%, where B; represents the contents
of the ith bin.

4. Compute the P-value for the observed 2, which has 9 DOF.

3

This is done for N = 10, 20, 30, ..., 200, for 11 different random number gen-

erators. The resulting P-value are shown in the following table:

N 1 2 3 4 5 6 7 8 9 10 11

10 0.322 0.693 0.729 0.996 0.85 0.000658 0.8 0.485 0.732 0.936 0.176
20 0.0332 0.823 0.0181 0.364 0.899 0.000248 0.091 0.698 0.861 0.518 0.996
30 0.159 0.742 0.177 0.0834 0.333 0.0872 0.831 0.0335 0.102 0.245 0.551
40 0.00173 0.443 0.575 0.0753 0.358 0.188 0.899 0.533 0.495 0.629 0.661
50 2.35e-18 0.869 0.00112 0.687 0.734 0.613 0.706 0.792 0.66 0.33 0.711
60 2.09e-12 0.284 0.823 0.375 0.708 0.715 0.739 0.105 0.627 0.897 0.388
70 3.4e-14 0.503 0.455 0.16 0.548 0.409 0.901 0.593 0.659 0.939 0.491
80 7.21e-16 0.923 0.211 0.0099 0.633 0.795 0.787 0.153 0.217 0.436 0.0507
90 7.14e-12 0.0891 0.057 0.33 0.819 0.832 0.932 0.127 0.245 0.347 0.251
100 9.23e-12 0.841 0.714 0.428 0.221 0.347 0.838 0.0128 0.936 0.97 0.95
110 2.49e-08 0.888 0.295 0.879 0.61 0.468 0.636 0.343 0.0465 0.568 0.384
120 2.01e-11 0.13 0.356 0.654 0.68 0.604 0.678 0.735 0.759 0.894 0.999
130 1.72e-06 0.559 0.622 0.164 0.259 0.59 0.505 0.716 0.608 0.96 0.0445
140 4.16e-13 0.118 0.444 0.256 0.0882 0.827 0.672 0.666 0.45 0.446 0.472
150 5.73e-06 0.489 0.125 0.376 0.0525 0.125 0.29 0.388 0.407 0.134 0.722
160 7.51e-05 0.976 0.491 0.0771 0.679 0.856 0.491 0.859 0.75 0.43 0.4
170 3.8e-08 0.729 0.238 0.305 0.175 0.154 0.113 0.429 0.992 0.834 0.0586
180 2.3e-05 0.179 0.121 0.994 0.825 0.0427 0.479 0.979 0.0264 0.486 0.053
190 0.053 0.33 0.693 0.338 0.504 0.9 0.766 0.923 0.343 0.0358 0.656
200 0.0174 0.281 0.504 0.424 0.082 0.327 0.143 0.698 0.858 0.992 0.827

The numbers at the head of each column identify a particular uniform
random number generator. The P-values should also behave as uniform
deviates. Obviously, this is not true for generator 1, and generator 6 is also
suspect. The 11 generators are described in the following subsections, whose
numbers correspond to the column headers.

3.1 random

This generator is provided by the system on Linux, Sun/UNIX and SGI/UNIX
platforms: it comes from the standard Berkeley source. It was considered to
be a superior generator, the best of the system supplied ones. It is therefore
surprising that it performs badly on this test, for N >~ 10. When a gener-
ator fails a test in this way, it is automatic grounds for rejection: don’t use
it for any purpose. (The test above was run on Linux, but I have confirmed
that random also fails as badly on Sun and SGI.)

The C and C++ standard library generator rand is quite inadequate on
the Sun and SGI platforms, as they only provide 16 bits of precision. For
Linux, there was an attempt to correct this situation by using the random
algorithm, which was believed to be of high quality, for rand.

Since rand is inadequate on all 3 platforms, it also must be rejected: Don’t
use the C or C++ standard library rand for any purpose on any platform.
Numerical Recipes[5] gives the same advice, and colorfully comments:

If all scientific papers whose results are in doubt because of bad
rand()’s were to disappear from library shelves, there would be
a gap on each shelf about as big as your fist.

3.2 random with the Liuischer fix

Martin Liischer’s scheme to fix generators like random is to generate a small
block of random deviates, then “throw away” a large block, causing the
generator to “forget” about the small block. Column 1 suggests that N = 10
is safe, so this plan is implemented as follows:

int randomlux() {
static int n=0;
if (++n>=10) {
for(int j=0;j<90;++j) random();
n=0;
+
return random();

b

As column 2 shows, this scheme does actually correct the defect present
in random—at least as far as the maximum spacing test is concerned.

3.3 1lrand48

1rand48 is also provided by UNIX/LINUX. It generates uniform random
deviates using a linear congruential algorithm with 48-bit integer arithmetic.
It passes this test, as shown in column 3. Strangely, the Linux man page
says:

These [1rand48| functions are declared obsolete by SVID 3, which
states that rand(3) should be used instead.

which is NOT good advice. 1rand48 has the interesting feature of allowing
the user to change its default multiplier via a call to 1cong48, which gives
the user a chance to really mess things up.

3.4 multiply with carry

Column 4 is George Marsaglia’s “multiply with carry” generator, which
passes. Quoting Marsaglia: “I predict it will be the system generator for
many future computers”. Unfortunately, this prediction has not yet come
true.

3.5 VAX system generator

A sentimental favorite, this linear congruential generator (column 5) also
passes the maximum spacing test.

3.6 randu

The very bad generator of column 6 was supplied by most systems of the
1960’s to unsuspecting users. Interestingly, it does fail the maximum spacing
test, but in contrast to random, it is bad in the neighborhood of N ~ 20,
and recovers for N >~ 40. randu fails many other tests, and was abandoned
long ago.

3.7 rndm

This obsolete generator (column 7) from CERNLIB passes the test. It ap-
parently has a rather short period by modern standards.

3.8 ranmar

Column 8 also passes. According to the CERNLIB documentation: “The
period is about 10%** and the quality is good but it fails some tests.” I
interpret this to mean “Don’t use it”.

3.9 ranlux

Column 9, ranlux operating with the default settings, passes. Probably the
best of the CERNLIB generators, it uses the Liischer scheme to fix a generator
that is known to fail some tests. By calling the configuration routine rluxgo,
the user can switch off the fix, thereby converting it into a bad generator.

3.10 ranecu

Column 10’s ranecu is yet another CERNLIB generator, and passes the max-
imum spacing test. Probably not as good as ranlux at it’s default setting.

3.11 ranarray

The latest version of Don Knuth’s ranarray[6] generator in column 11 passes
the test. It also uses the Liischer scheme to rehabilitate a generator that is
known to fail some tests.

4 A random Horror Story

The CLHEP class library[7] provides a class RandEngine that is advertised
as

Simple random engine using rand() and srand() functions
from C standard library to implement the £lat () basic distribu-
tion and for setting seeds.

HepDouble RandEngine::flat()

It returns a pseudo random number between 0 and 1, according
to the standard stdlib random function rand () but excluding the
end points.

Let’s look at CLHEP’s implementation of RandEngine: :flat():

double RandEngine::flat()

{
// rand() is such a horrible generator, it only generates 15 bits.
// The quick fix here to get it to at LEAST 32 bits is to grab two values,
// and concatenate them, but that still leaves two bits empty and these
// we grab from the number of times flat() has been called, i.e. seq.

return double((unsigned int) ((rand() << 17) | // bits 31-17
(seq++ & 0x3 << 15) | // bits 16,15
rand () // bits 14-0
) * mantissa_bit_32

);

The implementer has realized that 15 bits are not enough, and calls
rand() twice to get more bits. Unfortunately, the Linux rand() actually
provides 31 bits, and the RandEngine: :flat() code shown above makes no
provision for that. The ISO standard only guarantees that RAND_MAX will
be at least 2'° — 1, so the implementer has made an unjustified assumption
based on rand()’s behavior on a specific platform.

Deviates produced by RandEngine::flat() on Linux are not even uni-
form. Referring to the code above, while bit 31 is random, bits 30—15 are
produced by an “|” operation between random bits, which means that, for
each of bits 30-15, there is a 75% probability that it is 1.

We can calculate the exact mean of the Linux RandEngine: :flat() de-
viates as the sum of the contributions from each bit:

1 3 3 3 3 5 19
mean—4+16+32+64+128—1—---—8 277 ~0.625
where —271% is the correction for the fact that it’s only bits 30-15 that are
“enriched”, not all the bits 30-0.

To test this prediction, we run the following trivial C+4 program on a

Linux platform

#include<iostream>
#include "CLHEP/Random/RandEngine.h"
int main() {

RandEngine r;

const int nsum=10000000;

double sum=0;

for(int i=0;i<nsum;++i)

sum += r.flat();
std::cout << sum/nsum << std::endl;
return O;

On Linux, the result printed is 0.624956, as the reader can easily verify
(the statistical error here is of order 0.0001, so the —271? term is negligible).
This, of course, is a disaster, as uniform deviates obviously should have a
mean of £.

While this particular bug might be fixed by using instead of
the fact that the C and C++ rand() algorithm can be different on every
platform, and can change at every system upgrade, argues that using rand
is too dangerous.

As of the date of this note, this bug still exists in all Linux ver-
sions of libCLHEP.a used at CDF. The extent of problems caused
by it is unknown. The bug was found (just a few hours ago) by reading
the source file RandEngine.cc, not by running an empirical test.

U~ (13 | 2
Y

5 Conclusions

Most modern generators pass the maximum spacing test, and the infamous
randu fails it. The UNIX/Linux random generator fails badly, and should
not be used. The C and C++ standard library generator rand is the same as
random on Linux platforms, and rand should not be used on any platform.
CLHEP’s RandEngine: : flat () provides an example of what can go wrong if
this rule is violated. Providing defective generators is an old tradition among
system programmers, and is likely to continue until the rand algorithm is
specified by international standards.

I have tried to keep a sense of humor while writing this note, but unfor-
tunately, I will also have to change generators used in some of the software
I have written, if I am to follow my own recommendations.

References

[1] Donald E. Knuth, “The Art of Computer Programming”, Volume 2, 3rd
edition, (Addison-Wesley, Reading, Massachusetts, 1998), §3.3.2, page
71.

2] stat.fsu.edu/"geo/diehard.html
stat.fsu.edu/pub/diehard/

[3] H. A. David and H. N. Nagaraja, “Order Statistics”, 3rd edition, (Wiley,
Hoboken New Jersey, 2003), §6.4, page 135.

[4] Donald E. Knuth, “The Art of Computer Programming”, Volume 1, 3rd
edition, (Addison-Wesley, Reading, Massachusetts, 1997), §1.2.6, page
64, equation 34.

[5] William H. Press, et al., “Numerical Recipes”, 2nd edition, (Cambridge
University Press, Cambridge, 1992), §7.1
lib-www.lanl.gov/numerical/bookcpdf/c7-1.pdf

[6] www-cs-faculty.stanford.edu/ knuth/news02.html#rng
www-cs-faculty.stanford.edu/ knuth/programs.html#rng

[7] CLHEP—A Class Library for High Energy Physics
wwwasd.web.cern.ch/wwwasd/lhc++/clhep/
wwwasd.web.cern.ch/wwwasd/lhc++/clhep/manual/RefGuide/Random/RandEngine.html

http://stat.fsu.edu/~geo/diehard.html
http://stat.fsu.edu/pub/diehard/
http://lib-www.lanl.gov/numerical/bookcpdf/c7-1.pdf
http://www-cs-faculty.stanford.edu/~knuth/news02.html#rng
http://www-cs-faculty.stanford.edu/~knuth/programs.html#rng
http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/
http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/manual/RefGuide/Random/RandEngine.html

	Introduction
	The Maximum Spacing Statistic
	Performing the Test
	random
	random with the Lüscher fix
	lrand48
	multiply with carry
	VAX system generator
	randu
	rndm
	ranmar
	ranlux
	ranecu
	ranarray

	A random Horror Story
	Conclusions

